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Abstract 

The feasibility of assimilating satellite  altimetry data  into a global ocean general cir- 

culation model is studied.  Three years of TOPEX/POSEIDON data is analyzed using 
a global, three-dimensional, nonlinear primitive equation model. The assimilation's 

success is examined by analyzing its consistency and reliability measured by formal 
error  estimates with respect to independent measurements. Improvements in model 

solution is demonstrated,  in  particular, properties not directly measured. Comparisons 

are performed with sea  level measured by tide gauges, subsurface  temperatures  and 
currents from moorings, and  bottom  pressure  measurtments. Model representation er- 

rors dictate  what can and cannot be resolved  by assimilation and its identification is 

emphasized. da 2i-i " dlahfl 

1. Introduction 

Data assimilation provides a means to estimate  the  state of the ocean from incomplete 

and  sparse observations (Bennet, 1992;  Wunsch,  1996),  which characterize oceano- 
graphic  measurements. The  estimate is  achieved  by dynamically interpolating and 

extrapolating observations using theoretical relationships among  properties embodied 

in  models. 

While data assimilation has become a mature tool  for both research and application 

in meteorology, it is an emerging  field in oceanography and much focus has hitherto 

been in theoretical investigations of methodology  (see,  for example, reviews  by Ghil 

and Malanotte-Rizzoli [1991] and Anderson et al. [1996]). Methods based on statistical 

correlation (e.g.,  Ezer and Mellor,  1994) and quasi-geostrophic dynamics (e.g.,  Haines, 

1991) have been explored to  map observations onto model  fields. Approximations 
in  estimation  theory have  been  advanced to overcome computational  requirements of 

Kalman  filtering (e.g., Fukumori et  al., 1993,  1995; Cane et al., 1996; Evensen, 1994). 

Significant progress has been made in  automatic adjoint code generation (Giering and 

Kaminski, 1998)  which together with advances  in computational power  have enabled 
adjoint methods  to  be applied to large-scale  problems  (e.g., Stammer  et  al., 1997). 

It is often taken for granted that assimilated estimates are more accurate than 

non-assimilated model results. However, the accuracy of the  estimation critically  de- 

pends on  the reliability of the underlying assumptions, implicit and/or explicit. In 
principle, if the assumptions  are correct and  the problem  is  solved consistently with 
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such assumptions,  an assimilated estimate should be more accurate  than one without 

assimilation in every aspect of the solution, or at least no  worse than such, including 
properties not directly measured by the  data. For instance, a solution based on.  assim- 

ilation of altimeter data should produce better  (at least not worse) temperature  and 
velocity  fields throughout  the water column. 

The purpose of this stady is to test  this assertion by assimilating the  TOPEX/ 

POSEIDON  altimeter data into  a global, three-dimensional, nonlinear primitive equa- 

tion model. Although global in coverage, satellites only measure properties of the sea 

surface, whereas ocean circulation is inherently three-dimensional. In  addition, the na- 

ture of ocean circulation associated with large-scale  sea  level changes is spatially  and 

temporally inhomogeneous (e.g., Fukumori et al., 1998) making ocean estimation from 
altimetry nontrivial. Various measures are explored to assess the goodness and success 

of the assimilation. The results are compared to observations, both  the ones that have 

been assimilated and those not included in the assimilation, for testing  the degree of 

improvement made by the assimilation over pure simulation without assimilating any 
data. The assimilation’s consistency and accuracy are examined with respect to formal 

uncertainty  estimates. In particular,  assumptions  are clarified to explicitly identify the 

nature of the  estimate, in terms of what is and is not resolved by the calculation. The 

problem, as it will be shown, in essence concerns identification and specification of un- 

certainties in both model and data, which are often assumed to be given in theoretical 

studies of assimilation methods. 
The manuscript is  organized as follows. The model and data  are briefly described 

in sections 2 and 3, respectively. The assimilation scheme together  with its assumptions 

are discussed in section 4, and the results’ consistency is analyzed by various measures 
in section 5. A summary and discussion  is presented in section 6. The  paper ends with 

concluding remarks in section 7. 

2. Model 

The model used in this  study is the same as that used by Fukumori et al. (1998) 

and is based on the Modular Ocean Model version  1.0  developed by the Geophysical 

Fluid Dynamics Laboratory of the National Oceanic and Atmospheric Administration 

(Pacanowski et  al., 1991). The model is a nonlinear primitive equation model using the 
Boussinesq and rigid lid approximations. The model domain extends over the world 
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ocean from 80"s to 80"N with a uniform spatial resolution of  2" longitude  and 1" lat- 

itude.  There  are 12 vertical levels (Table l), which are chosen to coincide with the 

inflection points of the eleventh baroclinic mode of horizontal velocity corresponding to 

the mean  temperature-salinity profile of the global  ocean (Levitus, 1982). This choice 

is an  attempt  to make the vertical  grids resolve vertical scales uniformly with respect 
to  the mean  stratification for a given number of vertical levels. The model has  realistic 

topography and coast lines as shown in  Figure 1. All horizontal  boundaries  are  treated 

as impermeable  with no-slip boundary conditions. Conventional Laplacian  operators 

are used for horizontal  and  vertical mixing. HorizontG viscosity and diffusivity are set 

constant  with values of 2 x  10' and 2x107 cm2/s, respectively. Vertical mixing coeffi- 

cients are based .on the Richardson  number  formulation of Pacanowski and  Philander 
(1981), with an additional local vertical mixing performed to remove any  statically 

unstable profiles. 

The model is first  spun up for 8 years forced by climatological monthly winds 

(Hellerman and Rosenstein, 1983) and by relaxation (30-day time-scale) of its  surface 

temperatures  and  salinities  to  monthly  Levitus' (1982)  values. The  initial condition is 

at rest  with a temperature  and salinity  distribution of Levitus (1982). Following the 

8-year spinup,  the model is forced  by daily surface winds and climatological monthly 
heat flux from January 1992 to December  1995. The winds and  heat flux are based, 

respectively, on the National  Center for Environmental  Prediction's (NCEP) 1000 mbar 

analysis using the formula of  Wu (1982) and on the Comprehensive Ocean-Atmosphere 

Data Set (COADS)  (Slutz  et  al., 1985;  Woodruff et  al., 1987) compiled by da Silva et 
al.  (1994). 

A linear trend is computed  and removed  from  all results of the model calcula- 

tion  (Fukumori et  al., 1998). Such trend  arises  primarily  because the model's thermal 

forcing during  the real-time run  (as opposed to spin-up)  has  no  relaxation  terms; In- 

compatibilities between oceanic heat flux and  the prescribed surface flux during  the 

relatively  short  simulation lead to secular changes in ocean circulation. However, their 
effects are local for short  periods of time as conducted in this  study,  and  therefore 

subsequent  analyses will focus on the variabilities with respect to  this  trend. 
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3. TOPEX/POSEIDON Data 

Global sea level  anomalies measured by TOPEX/POSEIDON (T/P) from January 1, 
1993 to December 31, 1995 are analyzed. Data  are based  on the merged T/P  Geophys- 

ical Data Record (GDR) with all standard environmental corrections applied including 

solid earth and ocean tides, water vapor, dry tropospheric and ionospheric delays, and 
an inverse barometer correction for atmospheric pressure loading of the sea surface. 

Oceanic tidal correction is  based  on the University of Texas model (Eanes  and Bet- 

tadpur, 1996), and  the inverse barometer correction takes into account the temporal 

changes in global mean atmospheric pressure (Ponte, 1993). Temporal- variabilities 

(sea level anomalies) are computed relative to  the 3-year mean sea level to avoid uncer- 

tainties associated with the marine geoid. Time-continuous, along-track measurements 
will be used directly in the analysis as opposed to space-time maps of the  data,  to 

avoid possible aliasing of high  frequency barotropic signals at high latitudes  (Fukumori 

et al., 1998). However, in light of the coarse resolution of both model (Section 2) 
and assimilation scheme  (Section 4), and to limit the volume'of the raw data  set,  the 

T/P measurements were  averaged along-track into 2.5" latitudinal bins. Finally, linear 

trends  in measured sea level  were computed and removed from the binned T/P data, 

because trends which are not resolved  by the present model (Section 2) would require 
modifications to  the assimilation scheme otherwise (Gelb, 1974). 

4. Approximate Kalman Filter and Smoother 

The assimilation in  this  study employs an approximate Kalman filter and smoother 

based on a time-asymptotic and a reduced-state approximation (Fukumori et al. [1991], 
Fukumori and Malanotte-Rizzoli [ 19951). In short,  the two approximations simplify the 
evaluation of the estimation's error covariance matrix so as to minimize the computa- 

tional requirements of Kalman filtering. The asymptotic approximation employs the 

time 'asymptotic limit of the Riccati equation rather  than evaluating a time-evolving 

error  estimate. The reduced-state approximation seeks to represent the  error covari- 
ance with fewer  degrees of freedom than those of the model's prognostic variables. The 

representation is  carefully  chosen to resolve the dominant structures of the  error. 

The two approximations would  formally  lead to  suboptimal  estimates; However, 

given the uncertainties in our knowledge about  the exact nature of the  data error 

and process  noise (e.g., their structural and temporal dependence), the results may be 
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statistically indistinguishable from truly  optimal  estimates (Cane  et al., 1996). The 

virtue of the approximations lies in rendering the  quantitative framework of Kalman 

filtering feasible,  allowing objective evaluation of the  estimation  error covariances.  For 

instance,  estimation errors are typically anisotropic and inhomogeneous with  nontrivial 

covariances among different properties that  are otherwise difficult to specify. As shown 

below and  in  the next  section, the  error covariances  define the assimilation problem 

itself and  dictates  the goodness of the assimilated solution. The..objective  formulation 

of the  Kalman filter assures the accuracy and consistency of the resulting assimilation. 

4.1 State Reduction 
A natural basis set for approximating  the filter  is  identified  by examining prop- 

erties of sea level.  Using the  same model as in the present study, Fukumori et al. 
[1998] recently investigated the  nature of large-scale  sea  level variability. Despite the 

enormous degrees of freedom present in such general circulation models, only a handful 

of processes are found to dominate  sea level  variability. In  the tropics  (latitude < 
20°) ,  low-frequency (> 100 days) wind-driven baroclinic changes are dominant  with 

the first baroclinic mode contributing most of the variance. Variability associated with 

high-frequency  wind-driven barotropic motion are  the largest sea level signal at high 

latitudes (4 >40°), accounting for as much as half the variance in periods  shorter than 

20-days. In  mid-latitudes  (20°< 4 <40°), near-surface steric effects due  to seasonal 

heating and cooling are found to dominate sea level  variance.  However, to first ap- 

proximation, large-scale  seasonal heating and cooling  affect local heat  storage but have 

relatively small dynamic effects (Gill and Niiler  [1973]). Therefore, a leading approx- 

imation for the dynamics of global  large-scale sea level change is attained in  terms of 
the  barotropic  and first  baroclinic modes alone. 

The approximate filter  is computed relative to  the time-mean state of the model 

simu1,ation. Although variable topography and nonlinearities render the equations of 

motion nonseparable  into independent vertical modes, and  thus each mode is dependent 

on another, dynamic  normal modes  locally  form a complete set of orthogonal vertical 
basis functions  with which  variables can .be expanded. The model’s transport  stream 

function ($) conveniently  defines the  barotropic mode. The baroclinic component is 

defined  by amplitudes of the model state anomalies projected onto  the first baroclinic 

mode.  Vertical  displacement  is  used as one of the baroclinic variables instead of tem- 

perature  and salinity, because of the  adiabatic  nature of wind-driven sea level  change. 
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In summary, the model's prognostic variables, zonal (u)  and meridional velocity ( v ) ,  
temperature ( T ) ,  and  salinity ( S ) ,  are approximated by 

where overbar  denotes  the reference state,  and 1; and k are  structures of first  baro- 

clinic modes of velocity and displacement defined  locally, respectively (e.g., Gill, 1982). 

Coefficients a,  , a,, ad denote  first  baroclinic mode amplitudes of zonal and merid- 
ional velocity, and vertical displacement, respectively, and  are functions of horizontal 

location. 

Prospects of reducing the horizontal degrees of freedom are assessed by examining 

scales of variability.  Empirical  orthogonal  functions (EOFs) were computed based on 
correlation of model sea level  over the  entire domain.  The  correlation  matrix  instead of 

the covariance matrix is  used to derive EOFs, so as to identify the dominant scales of 

correlation rather  than  structures of dominant variance. The first two modes describe 

the  annual period  and  dominate the overall variability  (38% of the  total), while the 

next 297 EOFs  are found necessary to explain 99% of the remaining  correlation. 

Figure 2 shows typical examples of the  structure of the  resolution matrix (see, for 
example,  Fukumori  and Malanotte-Rizzoli [1995]) that in  effect describes the scales of 

variability. Based on such structures, a coarse grid was defined with a uniform 10" by 

5" zonal and meridional  grid  spacing, respectively, so as to resolve the dominant scales. 

Objective  mapping  (Bretherton  et  al., 1976)  is  used to map values on this coarse grid 
onto the finer model grid,  thus defining the coarse-to-fine grid  transformation for the 

reduced-state  filter. A Gaussian  correlation  function is  used with  correlation  distance 

of 7.5" zonally and 3.75" meridionally (75% of the coarse grid  spacing). Distances 
between any two points are computed along great circles unless a land  mass is present 

in between,  in which  case it was computed  around  the  land  perimeter.  Therefore, 

for example,  correlation across the  Isthmus of Panama is nil, even though  the  direct 
distance is small. 

An inverse transform that maps variables on the model's horizontal  grid  onto  the 

coarse grid was computed as the pseudo inverse of this  objective  mapping  operator. 
Figure 3 compares  sea level anomaly at  a particular  instant  with its coarse approxi- 

mation;  The similarities between the fine and coarse representation  demonstrates  the 

fidelity of the transformation  as well as the large-scale nature of model sea level. 
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The same mapping operator is  used  for all coarse grid state elements, except for 
differences due  to relative grid location (B-grid)  and for stream  function. For the  latter, 

mapping is performed so as to satisfy the horizontal boundary condition of no .normal 

flow into boundaries. This is  achieved by solving the corresponding vorticity equation 

following the above objective mapping operation. 

4.2 Model  Representation Error 
The Kalman filter in essence  is an inversion of model equations based on relative 

accuracies of model and data (e.g., Gelb, 1974). One of the  primary  virtues of Kalman 

filtering is in its objective framework of evaluating errors as part of the estimate. How- 

ever the so-called Riccati equation that describes the evolution of such errors involves 

data  error  and model process  noise, of which both must be specified a priori. It is 

instructive to identify the exact nature of these errors for any assimilation problem, 

whether solved by the Kalman filter or otherwise, because such error specification de- 

fines the inverse problem itself. The  nature of model and data errors  are identified 

below first for the full estimation problem, and  then followed by the equivalent under 

the reduced-state approximation. 

Data assimilation is  typically set up  in  terms of a least-squares estimate (x) that 

minimizes the following  cost function J ;  

J = C t ( y  - H(x)) R (y - H(x)) + &(X - 12) P (X - 12) T -1 T -1 

Here, 12 is the model's true  state  to be defined presently, y is the  data, H(x) is the model 

equivalent of the  data, and  the weights R and P are  the  error covariance matrices of 

data  and model, respectively (e.g., Wunsch, 1996). Proper specification of these weights 

is essential to  the optimality of the solution because a mis-specification by definition 
amounts to solving a different problem. Cohn (1997) describes the exact nature of 

these' error covariances and is summarized below. 

First, it is essential to recognize the fundamental difference between the ocean and 

the model. Models have finite dimensions whereas the real ocean has infinite degrees 

of freedom. The relation between the real ocean (w) and the model's true  state (12)  
could be expressed functionally as; 
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The  operator ll relates the complete and exact state of the ocean to  its representation 

in the finite  and  approximate  space of the model. Such operator  includes both  spatial 

averaging  as well as  truncation  and/or  approximation of the physics. For instance, 

finite  dimensional models  lack  scales smaller than  its grid  resolution.  Quasi-geostrophic 

models resolve neither  inertial waves nor tides. Then, ‘model error’ is the difference 
between a given  model state  and  the  true  state defined by (3),  

x - j z = x - n w  (4) 

the expected covariance of which is P (Eq 2). 
‘Data error’ also requires some consideration.  Observations y measure  properties 

of the real ocean and  can  be described symbolically as; 

~ = E ( w ) + E  

where E represents the measurements’  sampling  operation and E denotes  measurement 

errors.  Function E is generally different from the model equivalent, H, owing to  the 

differences  between x and w (Eq 3). Measurement errors are  strictly  instrumental 

errors of the observation,  and  represent  quantities  unrelated to either  the model or the 
ocean. For satellite  altimetry, E includes, for example,  errors  in the satellite’s  orbit and 

ionospheric corrections. 

In  terms of quantities in model space,  equation (5) can be  rewritten  as; 

y = H(2) + {E(w) - H ( ~ W ) }  + E (6) 

Assimilation is the inversion of (6) that relates model state  to observations rather  than 

a solution of (5). The second term  on  the right-hand-side of (6) describes differences 
between the ocean and  the finite dimension of the model, and is termed model repre- 

sentation  error.  Representation  errors  correspond  to processes affecting observations 

but missing from the model, and, as far  as the model inversion is concerned, is indis- 
tinguishable from instrument  error.  Representation  errors  are  inconsistent  with model 

physics and  are typically, but not necessarily, quantities whose scales are smaller than 

model grid  spacing. Being inconsistent with the model, representation  errors are not 

correctable by assimilation. 
Representation  error  and  instrument noise together  constitute  uncertainties re- 

lating  observations  and model state,  and for a lack of a better word, are collectively 
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called ‘data  error’ with  its expected covariance  being R in Eq (2). In effect, represen- 

tation  errors downweight the  data constraint  (Eq 2) and  prevent a model from being 

forced too close to observations that  it cannot  represent, thus guarding  against. model 

‘indigestion’. 

Under the reduced state approximation, the model state  and  its  errors  are divided 
into  contributions  from  the  range  and null space of the  state reduction  transformation; 

e457 
X = X r + X n  (7 )  

(Subscripts T and n denote the range and null space‘of the  state reduction  operator, 

respectively.) The reduced-state  filter solves the  optimization  problem (2) in  terms 

of the reduction’s  range  space, by approximating the model error (4) with its range 
subspace; 

X r - 1 2 r M x - I I w  (8) 

The model  state’s  null  space  part of the  state reduction, Xn, is unconstrained by the 

approximate  filter  and  its  errors  contribute  to  ’data  error’. Namely, under the reduced- 

state  filter, model data differences are computed in the  total model space  (Fukumori 

and Malanotte-Rizzoli, 1995) and Eq ( 6 )  is solved as, 

y = H ( i r )  + H ( x n )  + {E(w) - H(nw)} + (9) 

The first term in ( 6 )  is rewritten in terms of the unknown range part of the  true model 

state (12,) plus the unconstrained null space part (Xn).  The  approximate  filter  in effect 

inverts the first term of (9). Uncertainties of the second term, viz., errors in the  state 

transformation’s  null  space, therefore constitute  part of the  uncertainties of Eq (9) in 
addition to  the model’s ’data error’. 

4.3 Error Specification 
Equations (4) and (6) identify errors for the  assimilation  problem,  but  do  not by 

themselves describe the errors’  magnitude or structures. Fu et  al. (1993) introduced 
an  objective  approach in assigning actuaI values  for  such errors. Here, we shall  write 

down the equivalent equations for the reduced state filter. The observation, y ,  and  its 
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simulation (model equivalent), m, can be written in terms of the  true signal plus their 

respective errors; 

where s and p are signal and simulation errors, respectively. r is data error  and is the 

sum of instrument  error plus model representation error (Eq  6). Subscripts r and n 

denote the range  and null space of the  state reduction operator, respectively. Assuming 

the signals and  the two errors,  and the range and null space of the  state reduction are 

mutually  independent, the covariance among the  data and simulation  are; 

The covariance of the residuals (model data difference) are, 

From these  equations, the reduced state’s simulation error and  the effective data error 

(Eq  9) can  be  estimated by, 

respectively. The right hand side of (18) and (19) can be estimated by comparing 

T/P  observations with results of the simulation, substituting  temporal averages for 

statistical ensemble means. Plates l a  and lb, show results of such computation. Data 
error is the dominant component (r), and is in fact much larger than  the measurement 

accuracy of T/P, which  is about 2 to 3 cm rms. Such  excess data error is due to  the 

coarse nature of the model (and  to a lesser extent that of the  filter), which limits the 

10 



4 

model’s ability  in simulating mesoscale  eddies.  Sea level variance due  to mesoscale 

eddies are  part of the model’s representation  error  and should therefore be included in 
data  error  (Eq 6). In fact much of the  data error estimate’s structure  (Plate la) reflects 

the  spatial  distribution of mesoscale  variability. 

The model’s incremental error, i.e., process  noise, was modeled in  the form of wind 
error with covariance proportional to  the sample covariance of NCEP winds  used in 

forcing the model. This  assumption, however, should not be literally  interpreted as 

model errors being dominated by  wind errors.  Rather it  is merely an assumption of a 

particular  form of model  process  noise  (e.g.,  Miller and Cane, 1989). The magnitude of 

process  noise is  calibrated such that  the corresponding error  estimate of the simulated 

state (solution of the Lyapunov Equation [e.g.,  Stengel,  19861)  would be comparable 

with those  based on Eq (18) (Plate  lb) (Fu et al., 1993;  Menemenlis and Chechelnit- 

sky, 1998). Plates IC and  Id show such calibrated process  noise and corresponding 

simulation error  estimates, respectively. 

4.4 Structures of the Kalman Gain 
The  approximate  Kalman filter is  defined  by a time-asymptotic  error covariance 

matrix of the assimilated state. Such limit is computed assuming a stationary observing 

system in  addition  to  the calibrated data error and process  noise estimated above. Data 

distribution  during one three-day period was  used as a representative  set of regular 

observations as in Fukumori (1995), taking advantage of the  three-day subcycle of T/P. 
Namely, the approximate  estimation  error covariance matrix is computed  assuming data 

at locations during one particular subcycle of T/P being instantaneously assimilated 

every three-days. Note  however, that  actual assimilation, while employing the resulting 
time-invariant state error covariance matrix, correctly accounts for the time-varying 

data  distribution; Le., both H and R are time-varying  in the  Kalman filter (Fukumori, 

1995); 
To gain some insight into  the  nature of the Kalman filter’s inversion, Plate 2 exam- 

ines how the filter distributes model  changes  vertically  in terms of their  contribution 
to sea level.  Namely, the figure  shows  model  sea  level  anomalies at each grid point 

corresponding to  the filter’s  changes in first baroclinic and  barotropic circulation under 

a 1 cm instantaneous  model-data difference at  that location. 
Plate 2 shows the filter interpreting model  sea level errors as  errors  primarily  in 

baroclinic circulation in  the tropics and barotropic circulation  away from the  equator, 
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consistent with the general nature of sea  level  variability (Fukumori et  al., 1998) and 

the assumed form of model  process  noise  (i.e., wind). The sea level changes themselves 
are much smaller than  the assumed model-data difference of 1 cm; This is .due  to 

uncertainties of the  data on  one hand  (Plate la) and  the accuracy of the model achieved 

by accumulating information from past observations on the  other. 

The horizontal structure of the Kalman gain (Figure 4) is mostly local, in a sense 

that  the influence of a single data point is  geographically  confined resulting  in a typical 

“bull’s  eye” structure for  model correction. However, the influence radius is  often 
anisotropic and inhomogeneous due  to differences in local dynamics. For instance, 

the  Antarctic Circumpolar Current (ACC) and  the presence of the mid-ocean ridge 

elongates stream function changes in  the Southern Ocean in  the east-west direction 

(Figure  4a). Baroclinic  changes at  the same location, although  small in  terms of its 

contribution to sea level,  also  have  significant  side-lobes along the  path of the ACC 
(Figure 4c). Changes in  stream function are typically associated with  dipolar  structures 

near  continents  due to boundary conditions, but also  exhibit similar structures near the 

Equator  (Figure  4b) because of the  Equator  acting  as a boundary  due to change in sign 

of the Coriolis parameter. The sign of the  stream function changes are also different 

at the assumed data points across the  Equator (Figures 4a and  4b)  due  to  the sign 

of the Coriolis parameter. Significant  side-lobes  also  occur in baroclinic changes along 

the  Equator reflecting Equatorial wave dynamics. Changes along the  Equator (Figure 

4d)  are  similar  to  the effects of local  wind-forcing,  which  forces a Kelvin  wave with 

temperature  and zonal  velocity  anomalies centered on the  equator,  and  an associated 
Rossby  wave  of opposite phase to  the west of the Kelvin  wave with off-equatorial 

maxima. 

5. Validation 

Data assimilation,  particularly  under the so-called weak constraint  (Sasaki, 1970), is 

a rank deficient  inverse  problem. There exist an infinite number of solutions that 
could reduce the model-data difference to  an  arbitrary  magnitude,  and therefore the 

accuracy of the result must be carefully  assessed.  Such  assessment can be achieved  by 

examining self-consistencies of the assimilated estimate  and by comparing  results with 
independent observations. All estimates discussed below are  smoothed  estimates (e.g., 

Fukumori, 1995)  unless otherwise noted. 
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5.1 Self  Consistency 

We examine the solution's consistency with respect to  the  statistical  assumptions  un- 

derlying the assimilation by comparing residuals of the inversion to corresponding  error 

estimates. Because  model residuals are dominated by data  error (section 4.3), the skill 

is best  compared among different model estimates;  simulation  (subscript sim),  forecast 

(argument -), and filtered analysis. The forecast  is the  estimate  immediately  prior  to 
the recursive  assimilation of the observations. Based  on the following relation  (e.g., 

Gelb, 1974); 

the skills of the dynamic forecast (X(-)) relative to simulation ( x s i m ) ,  and those of the 

filtered  estimate (x) relative to the forecast (x(-)) are, 

and 

respectively. The former measures the ability of the model in retaining  and  propagating 

data information  consistently in time whereas the  latter quantifies the measurements' 

effect in  correcting the model at  the  instant of each measurement. 
Plate 3 compares  estimates of the  left-  and  right-hand sides of Equations 23 and 24 

by substituting temporal averages in place of statistical  expectations. The agreement is 

remarkably good for both  estimates in terms of overall magnitude and  spatial  structure. 

The filtering process has improved the model  globally, and  particularly in the  Equatorial 
Indian Ocean (- 15"S), the tropical Pacific, the western tropical  Atlantic, and  the 

Bellingshausen Abyssal Plain. 

The skill of the forecast x( -) (Eq 23) compares the  assimilated  estimate  with data 

not yet  used and therefore provides one test of the  assimilation  against  independent 
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observations. In particular,  the fact that  the forecast  skill  is better  than  that of the sim- 

ulation  almost everywhere (Plate 3a)  further  demonstrates the assimilated estimate's 
reliability.  Regions  where the forecast  skill is  worse than  that of simulation are few and 

patchy  with  many coinciding with regions  associated  with large meso-scale  variability, 

such as  the Agulhas Current and  the Kuroshio Extension. Inaccuracies of assump- 

tions, such as missing  physics  being white in  both space and time, likely  outweigh the 
large-scale signal extracted by the assimilation in such  regions. .. 

5.2 Tide Gauge Records 

The model sea level estimates were compared with WOCE fast delivery tide gauge 

data,  made available from the University of Hawaii  Sea  Level Center  (Figure 5). Com- 
parisons are restricted to  stations where distances to  the closest model grid  point are 

less than 300 km. Stations were  also limited to those having daily sea level data avail- 

able for at least 550  days  over the 3-year  modeling period. Among 90 such available 

gauges, 65 (shown as empty circles in  Figure 5a) have smaller sea level  differences with 

the T/P assimilated estimates than with model simulation without  data assimilation, 

demonstrating improvements made by the assimilation. 

On  the  other  hand,  tide gauges that have larger model-data differences after T/P 
assimilation (solid  circles) indicate places  where the  estimation is inaccurate,  either 

due to  errors in the estimation process or unaccounted physics dominating  tide gauge 

records. Mitchum (1994)  performed a comprehensive comparison between tide gauge 

measurements and T/P data. In particular  stations  at Socorro (18"N, 111"W) and 

Fort  Point (37"N, 122"W) did not compare well with nearby altimetric measurements. 

Indeed sea level at these stations are hardly improved  by the altimetric assimilation, 
suggesting that these  stations  do  not represent sea level in the open ocean well. 

Mitchum (1994)  found that  the differences  in the exact location of some of the  tide 
gauge stations  and T/P ground points were important in  reconciling the two measure- 

ments because of the presence of large amplitude short-scale planetary waves. These 

stations include Noumea (22"S, 166"E) and French Frigate Shoals (24"N, 166"W). 

Because the approximate filter and smoother  are designed only to resolve  large-scale 
variability, the present T/P assimilation is not able to improve estimates at stations 

dominated by short-scale physics, as found at these stations. 
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Comparisons of the assimilated results with in situ  measurements  depend on how 

representative the  latter is of the  larger scale circulation. Based on T/P data sam- 

pled at 25 km along-track resolution, Mitchum (1994)  generally found good agreement 

between tide-gauges and T /P  data, except  for the stations  described above. He also 

demonstrated  that  the agreement with coastal tide gauge measurements is  generally 
less than with island stations. In fact most of the  stations  with  larger model-data 

differences resulting from assimilation are found along continental  margins which are 

actually  outside the model domain due  to  the model's  coarse resolution. 

To examine the large-scale representativeness of.sea  level measured by individual 

tide  gauge  stations,  the  latter data were compared with the  gridded T/P observations 

used in  the assimilation (Figure 5b). Again,  comparisons  were restricted between sta- 
tions and  altimeter  data within 300 km of each other. This comparison differs from 
Mitchum's (1994) in  that comparisons are made with average T/P data within a 300 
km radius of the  tide gauges (in  addition  to  the 2.5" latitudinal averaging described 

in section 3) rather  than  the closest altimeter ground point at  the  same  latitude,  and 

inverse barometer corrections are applied for both altimetry and  tide gauge data. 

Many gauges with insignificant correlation with T/P observations (solid dots  in 

Figure  5b) coincide with those that show  lack of improvement by the T/P assimilation 
(Figure 5a), suggesting that short-scale processes near these stations dominate  tide 

gauge records that  are not adequately resolved  by the assimilation. In  particular, large 

deficiencies of the model  along the  northwestern coast of North America are  noted, 

where the California Current system is  known to have  large variations over  relatively 

small scales. 

5.3 Current Meter  Data 

Table 2 summarizes a comparison  between  model estimates and  near surface current 

meter data from the Tropical Atmosphere Ocean (TAO) array  located along the Equa- 
tor  in  the Pacific  Ocean. As measured by correlation and  residual variance, the zonal 

velocity of the model simulation is generally in  better agreement with  in  situ measure- 

ments than  the meridional component is'.  Likewise, the  assimilation shows  more  im- 

provement in zonal than meridional  velocity at these locations.  For instance, at 140"W 

45m-depth (Plate  4a)  the simulation resolves the dominant low frequency variation 
with time-scales of several hundred days,  but significantly  differs from the observations 
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from day 1000 to 1100. The altimetric assimilation corrects this  major  error  as well as 

reduces discrepancies during  other periods. 

On the  other  hand,  the assimilation results in degradation of the zonal  velocity 

estimates with respect to in  situ measurements near the surface at  ll0"W  and towards 

the  bottom of the current  meter  array at 165"W. A closer examination shows that these 
degradations  appear to be  due to processes that  are local and unresolved  by the model, 

i.e., representation  error. For instance, zonal  velocity  changes at 45m ll0"W  (Plate 4b) 

are dominated by a low-frequency  event from day 800 to 1300,  which  is qualitatively 

lacking from the model.  Such  anomalies are also absp t  from measurements at either 

120m ll0"W  (Plate 4c) or 45m  140"W (Plate 4a). 

The meridional component  shows little improvement  by the assimilation, in  par- 
ticular at 140"W where the model simulation itself demonstrates little skill. Plate 4d 

compares meridional velocity among the estimates at 140"W 25m-depth. As is typical 

for in  situ measurements, meridional velocity at the  Equator is dominated by  oscil- 

lations  with  amplitudes as large as 50 cm/s  and time-scale on  the order of 20-days 

(Halpern et al., 1988).  Although the model exhibits similar oscillations, they  are inco- 

herent  with in  situ measurements and  their  amplitudes  are much smaller, which again 

indicates a non-random  error consistent with missing  model  physics rather  than model 

state error. 

5.4 Subsurface  Temperature 

TAO's temperature measurements offer additional means of model validation. Plate 

5 shows examples of comparing TAO temperature anomalies with model estimates. 

At 8"N 180"E (Plates 5a, 5b),  both model and TAO  observations are fairly  coherent 
with depth, indicative of a low vertical mode dominance in the  temperature record. 

In fact the T/P assimilation is  fairly  successful in improving  model temperature varia- 

tions; where the assimilation resolves events more accurately in  magnitude and timing, 

especially around days 700 and 1000. 

At  0"N  95"W (Plates 5c, 5d), although TAO measurements display vertical coher- 

ence, the model  does not,  and in fact the assimilation results in a degradation of the 
estimate near the surface. This  apparently is due to errors in the model's mean vertical 

stratification  in the region. Figure 6 compares  mean temperature profiles of the TAO 
data  and model estimates. The thermocline is  close to  the surface towards the  eastern 
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end of the Equatorial Pacific, and as a result stratification is fairly strong at the sur- 

face at 0"N 95"W. In comparison, due  to its coarse resolution, the model thermocline 

is deeper and near surface stratification is  weak. As a result, the model's temperature 

at  the surface is dominated by changes associated with seasonal variations in vertical 

upwelling rather  than intraseasonal vertical movement of the isotherms, resulting in 
the model's degradation. 

At 2"s 165"E (Plates 5e, 5f), there is little improvement in  temperature  simulation 

both  at  the surface and depth even though mean vertical temperature  stratification of 

model and  data  are comparable (Figure 6). However, the dominant signal in the in 

situ measurements are qualitatively lacking in the model estimates, indicative of model 

representation  error. In fact, the in situ signal is incoherent over  375m depth suggesting 

the  data being dominated by shorter vertical scales than what the model can resolve. 
The  spatial dependence of the assimilation's skill in resolving temperature changes 

is best analyzed using XBT data  that provides a larger areal coverage. W.White  has 

gridded monthly average near surface temperatures from historical XBT data (1955 

to 1996), and  its global extent is particularly convenient  for comparison with present 

results. The gridded data set nominally covers the globe from 40"s  to 60"N at 5" 
zonal and 2" meridional resolution with eleven depths between .the surface and 400 m 

(Table  3). Comparisons are  made  during  the modeling period by interpolating monthly 

averaged model fields onto the  data grid. 

The T/P assimilation is found to improve the model temperature  simulation  at 

most depths,  but  there is a tendency for the assimilation to degrade estimates at deeper 

levels of the XBT data.  The model itself (simulation) has better skill in explaining 

observed temperature variability at shallower depths  than at deeper levels, but  this 
is primarily  due to  the dominance of seasonal heating and cooling and largely reflects 

the accuracy of COADS heat flux estimates (;.e.) external forcing) rather  than model 

dynamics per se. Plate 6 shows the spatial dependence of the assimilation's skill at 

four depths representative of the model resolution (Table 1). The largest degradation is 

found at 300m depth in the  Equatorial Pacific,  which dominates the overall statistics. 

The degradation along the Equator' at  depth is apparently  due  to inaccuracies 
in the assimilation itself rather  than due to model representation errors. Plates 5g 

and 5h compare temperature results at 0"N 140"W between  140m and 300m depths. 

Unlike other examples in Plate  5  that resulted in a  degradation,  the model simulation 
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is coherent with dominant variations measured by the mooring at  both depths. Yet the 

assimilation degrades the  estimate at 300m; in  particular  the  largest  degradation occurs 

between days 1100 and 1200. Interestingly, the difference  between simulation (red)  and 

assimilation (blue)  are of opposite sign  between  140m and 300m depths  during  this 
period; the assimilation (blue) is warmer than simulation (red)  at 140m but is  colder 
than simulation (red)  at 300m.  Such opposite changes are  in  the null space of the 

approximate  filter/smoother (section 3) and therefore indicate  a.process not accounted 

for in  the approximation. The changes of opposite sign are due  to meridional advection 

of background stratification, whose meridional gradient is  of opposite sign near the 

equator between 175m and 300m (Figure 7). The reduced-state filter assumes a closed 

dynamic  system within the reduced-state (Fukumori and Malanotte-Rizzoli, 1995). 

However, temperature changes near the  Equator  as shown above indicate otherwise, 
violating the assumption underlying the approximation and leading to degradation and 

inconsistency of the assimilation. 

5.5 Bottom Pressure Gauges 

The  barotropic circulation is best examined by bottom  pressure  measurements.  Figure 

8 shows the  distribution of bottom  pressure gauges  available during  the investigation pe- 
riod. Tidal signal was  first  removed from the hourly (in some  cases 15 minute interval) 

bottom  pressure data by the same University of Texas  model used in correcting T/P 
measurements. Residual tidal  fluctuations were further corrected by a least-squares 

fitting  procedure at each station  in  addition  to removing a linear trend  to account 

for possible instrument  drift.  The  result was then averaged  by a running  mean over 

twenty-four hours  into pressure measurements every  twelve hours. 

Figure 9 shows a typical comparison near Crozet Island. Bottom  pressure  in the 
Southern Ocean is dominated by  high  frequency  variations with time-scales as fast as a 

few days due to wind-driven barotropic motion (Fukumori et  al., 1998). Model results 
are  remarkably coherent with in  situ measurements, which  is a testament  to  the wind 

analysis’ accuracy.  Unlike  baroclinic  responses that depend on model stratification 
(Section 5.4), wind-driven barotropic response is  less dependent on oceanic state,  and 

therefore more accurately simulated by the model.  Nevertheless, model discrepancies 

are evident and T/P assimilation  does  improve  model estimates as evidenced in Figure 

9b,  in  particular  the lower  frequencies (periods longer than  approximately  50-days). 
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However, the  assimilation lacks the skill in correcting the  ultra-high frequency variations 

(periods less than 10-days),  despite the model's coherence with in situ measurements. 

The  limitation  at high  frequencies  is in part due to  the sampling  period of the altimeter 

being 10 days. 
Improvements  are evidenced at most bottom pressure measurement  sites, except 

three  among the fifteen. Comparisons at these  three  sites,  Dumont (65.6"S, 139.9"E), 

CD (58.4"S,  56.4"W),  and Capetown (34.6"S, 17.8"E),  are shown in  Figure 10. Model 

results are qualitatively lacking the dominant variabilities seen at CD and Capetown, 

suggestive of dominating model representation errorg. CD is  in the middle of Drake 

Passage, and  the fluctuations  appear to be related to changes in  the  Antarctic Cir- 

cumpolar Current, which the  present  simulation lacks the  grid  spacings  to resolve. 

Variations at Capetown may be related to  the Agulhas Current. Model results are in 
close agreement  with  pressure gauge records at Dumont. In fact, percentage-wise the 

simulation  explains  the  largest  fraction (56% of the  data variance) of observed pressure 

variability at Dumont among all bottom  pressure gauges. Apparently, the coarse state 

approximation of the region  is not good enough to improve the model results any fur- 

ther; i.e.,  errors  in  the  approximate  filter/smoother outweigh improvements gained by 

the information  extracted from altimetry. 

6. Summary and Discussion 

One of the  primary virtues of data assimilation is its  ability to estimate  properties not 

directly  measured. Such estimates could be of the same variable  as  assimilated  but 

at a time and/or location where observations  are not available, or of entirely different 

quantities. The accuracy of such estimates critically depends  on the assumptions  un- 
derlying the assimilation. If the  assumptions  are valid, an  assimilation necessarily leads 

to  a more  accurate  description of the ocean than without assimilation  in every aspect 

of the solution. Two properties  characterize  the accuracy of the  estimates; reliability 

and  completeness. 
Reliability concerns how meaningful estimates  are  and is closely related to  the 

consistency of assumptions. Nothing new  is learned if an assimilation is  less accurate 

than without  assimilation,  and  error  estimates  are not meaningful if they do not ade- 

quately  measure the uncertainties of actual  results. Completeness pertains  to what the 
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estimates  actually resolve and is related to the issue of model representation  error. As- 

similation provides estimates consistent with observations and models. However,  model 

physics are incomplete  due to  truncation by the models’ finite  dimensions and/or ap- 

proximations  in the physics, thereby leaving  processes that  are real but  are inconsistent 

with models and hence cannot be improved by assimilation. 

The accuracy of an  assimilation was examined in the  context of analyzing  satel- 

lite  altimetric  observations.  Three-years of TOPEX/POSEIDON  altimeter data from 

January 1993 to December  1995  were assimilated  into  a  global,  three-dimensional, non- 

linear  primitive  equation model. A time-asymptotic,  reduced-state  Kalman  filter  and 

smoother were  employed. The filter and smoother’s state reduction was  achieved  by 

including only the barotropic  and  first  baroclinic modes in the  estimate defined on a 

coarser  horizontal  grid than  the forward model. 

The reliability of the present estimates was demonstrated by statistical consistency 

checks as well as by improvements over corresponding simulated  solutions  against  in- 

dependent in situ observations, including sea level  from tide  gauges,  current velocities 

from moorings,  subsurface  temperatures from XBTs and  moorings, and pressures from 

bottom  mounted  pressure gauges. The  magnitudes of the  improvements were  shown to 
be largely comparable  with  formal  uncertainty  estimates. 

In some regions, however, inaccuracies in the  estimate were identified,  pointing 

to  the violations of some of the assumptions. For instance,  degradation  in  subsurface 

temperatures along the Equator was found to be due to inaccuracies in the reduced- 

state approximation. Namely, the dynamics of the chosen reduced state  (barotropic 
plus  first  baroclinic modes) cannot be approximated as being a closed system  near the 

Equator,  thereby  violating  the validity of the  reduced-state  approximation. Nonlinear 

advection causes coupling of the reduced state space with shorter  vertical scales that 
cannot  be  ignored.  These inaccuracies accumulate over time,  and in fact much of the 

degradation were found to occur towards the  end of the 3-year analysis  period. 

Some of the increase in model-data differences after the assimilation were at- 

tributed  to  the dominating model representation  errors. Over the  short  duration of 

the experiment, a large part of the model representation  errors is correlated  with the 

range  space of the model, and therefore differences  in model-data misfit  is  no  longer 

necessarily an  adequate measure of accuracy. 
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As evident from Eq (6), model representation  error  depends  on  the definition of 

model state.  There  are two categories in representation error; those  intrinsic to  the 

model itself and those due to  the limitations associated with the specific reduced- 

state approximation. For the  present  study, the  latter includes temperature errors 

associated  with inaccuracies in the mean  temperature profile (Plate  5c). Such errors 

can  be  reduced by including in the  estimated state,  diabatic processes controlling the 
model’s mean  hydrographic state, thereby changing the definition for the reduced-state. 

It should  be  noted that  as  far as analyzing  altimetric  anomalies are concerned, the 

present  adiabatic reduced state approximation is  entirFly consistent  with the  data used, 

and  that  the estimate’s  incomplete nature in hydrographic structure only  becomes  ev- 

ident when compared  with in situ measurements. Nonlinearities are not strong enough 
to adequately  constrain the mean state of the ocean for the present  model  from  alti- 

metric  anomalies alone. 

7. Concluding Remarks 

Proper prescription of model and  data uncertainties  are  essential for data assimilation, 

as they define the estimation problem and  thereby the quality of the solution.  In  par- 
ticular  identification of model representation  error is important in understanding  what 

exactly data assimilation resolves and hence is able to improve upon the results. An 

interesting  question is to ascertain  whether the missing physics included in represen- 

tation errors are  important  at all in controlling the general circulation of the ocean. 
For instance,  recent  parameterization of eddy transports  in  terms of the large-scale 

property  gradient  appear to be sufficient in accounting for  effects of eddy transport on 

the large-scale structure of the thermocline  (e.g.,  Danabasoglu  et  al.,  1994). 

A consistent global assimilation of altimetric data is  now feasible, but  the accu- 

racies of practical  estimates  are  limited  due to  the  insensitivities of the assimilation 

to some of the uncertainties of the model circulation.  Other  observations, in particu- 

lar, in situ  data  are essential in further  constraining  the model. Synthesis of various 
observations using models will likely be  an  iterative process of trial  and  error. While 
withholding  observations  as was performed in this  study, as opposed to assimilating 

all data  at once, is not fundamental for  checking consistencies, testing the validity of 

fewer assumptions (in particular data  error)  at a time by withholding  subsets of data 
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may more readily identify the source of inconsistencies. Every aspect of a model esti- 

mate is improved by assimilation only if all assumptions are valid. The challenge  lies 

in identifying the exact nature  and  property of model uncertainties that  are central to 

leading assumptions of data assimilation. 
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Table Legends 

Table 1: Depth of levels ( z )  and layer  thicknesses (Az) used in  the model. Units are 

in meters. 
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Table 2: Comparison of daily velocity anomalies measured by TOGA TAO moorings 

and model estimates  interpolated to corresponding current  meter  locations.  Correla- 

tions and residual variances (cm / s  ) with respect to  current  meter  measurements 

(TAO) are given for model simulation  (sim)  and T/P  assimilation  (assim). Also 

listed are  the respective velocity variances. The two numbers  under each heading 
correspond to zonal and  meridional components of velocity, respectively. Numbers 

in  parenthesis for the simulation  denote  estimates that have  statistically insignifi- 

cant  correlations (at 95%  confidence) with  current  meter  measurements or residual 
variances  larger than measurement variances indicating lack of skill. -Numbers  in 

parenthesis for the assimilation  denote  estimates that have less skill than  the simu- 

lation. 

2 2  

Table 3: A summary of comparing global monthly gridded temperature observations 

and model estimates. Values  shown are global averages. Numbers in parentheses 

for the simulation  indicate  estimates  with  larger  residual differences than  the  data 
variance themselves. Numbers in parenthesis for the  assimilation  denote  estimates 

that have less  skill than  the simulation. 

Figure Legends 

Figure 1: Model coastline  (thick) and  bottom  topography  (thin).  Contour  interval for 

topography is 1000 m. 

Figure 2: Structures of sea level resolution.  Contours  describe  particular columns of 

the sea level resolution  matrix based on the dominant 300 EOFs.  The  resolutions 

correspond to sea level at  the large center asterisk in respective figures; (a) 172"W 

35"N, (b) 152"W  0"N. Contour  intervals  are 4.4 x (A) and 1.7 x lov3 (B), 
respectively in arbitrary  units  (the sum of squared values  over the globe is  by defini- 

tibn  one.).  The coarse grid defining the approximate filter is denoted by the smaller 

asterisks. 

Figure 3: Coarse  representation of mode1,sea  level  anomaly. The model sea level (a) is 

transformed to  the coarse grid (b) by the horizontal mapping  operator discussed in 

Secion  2. Sea level is that of March 16, 1995 (1992 day 1170).  Contour  interval is 

5  cm. Solid (dashed) curves denote positive (negative) values. 
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Figure 4: Examples of Kalman gain's horizontal structure corresponding to a 1 cm sea 

level  difference  between data  and model at  the asterisk. Contours are barotropic 
mass transport stream function (a, b), and  temperature (c, d at 1700 m  and 175 

m  depth, respectively). Contour intervals are 2 x 10"' cm3/s for (a) and  (b),  and 
4 x and 4 X "C for (c)  and (d), respectively. Positive numbers  are shown 

in solid contours with the first positive contour equaling  half the contour interval 

in magnitude. Arrows in each figure are barotropic (a, b)..  and baroclinic (c,  d) 

velocities,  respectively, with reference  vectors  shown separately for each panel. To 

reduce clutter, only a subset of vectors are shown.where  values are relatively large. 
The assumed data locations are (a) 60s 170W, (b) 20N 60W, (c)  60s 170W, and 

(d) ON 170W. Corresponding effects on sea level at  the  data points are 0.02, 0.02, 

0.002, and 0.03 cm  for (a),  (b),  (c),  and  (d), respectively. 

Figure 5: Locations of tide gauge stations used in validating model estimates (a). 

Open circles denote gauges  which agree better with T/P assimilated estimate  than 

simulation without assimilation as measured by residual magnitudes. Also  shown in 
(b) by open (closed)  circles are  stations with significant (insignificant) correlation 

with T/P data used in this  study  at  the 95%  confidence. 

Figure 6: Mean vertical temperature profile at 0"N 95"W (a) and 2"s 165"E (b). 

Circles (thick line) and asterisks (thin line) denote averages of TAO and smoothed 

estimates, respectively. 

Figure 7: Mean meridional model temperature profile  along 140"W. 

Figure 8: Location of bottom pressure gauges  used in model-data comparison. The 

circles (asterisks) denote gauges with smaller (larger)  model-data difference after 

T/P assimilation. 

Figure 9: Bottom pressure near Crozet Island 46"s 52"E. Days  475 to 550  is expanded 

in (b)  to show details. Different curves are in situ measurement (black), simulation 

(gray dashed),  and T/P  assimilation (gray solid). The  upper plot does not show 
the simulation to reduce clutter.  The,model-data residuals for the simulation and 

assimilation are 11.0 and 8.5 mbar2, respectively. 

Figure 10: Bottom pressure at 58.4"s 56.4"W (a), Capetown 34.6"s 17.8"W (b), and 

Dumont  65.6"s 139.9"E. The model-data residuals (mbar2) (simulation, assimila- 

tion) are (a) (22.9, 23.1), (b) (3.8, 4.1), (c) (5.2, 6.l), respectively. 
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Plate Legends 

Plate 1: Error  Calibration; (a) estimate of effective data  error of the reduced-state 
filter (Eq  19), (b) model simulation error  estimate (sea level) (Eq  IS), (c) calibrated 

(zonal) wind stress  error, (d) model simulation error (sea level) based on (c). See 

text for details. 

4 

Plate 2: Sea  level anomaly (cm) associated with Kalman filter changes in model state 

corresponding to  an instantaneous 1 cm model-data difference; (a) baroclinic dis- 
placement, (b) barotropic circulation. The estimates are  strictly local reflecting sea 

level  difference at each separate grid point. 

Plate 3: Differences of model-data residuals; (a) simulation minus forecast, (b) expected 

value of (a), (c) forecast minus analysis, (d) expected valued of (c). Values are root- 

mean-square differences of model-data residual variances. The sign is as  indicated 

above; e.g., positive values in (a) indicates larger simulation residual than forecast 

residual. Units in cm. 

Plate 4: Comparison of velocity anomalies (cm/s)  at select TAO current  meters.  The 

figures compare zonal  velocities at 45m  140"W (a), 45m ll0"W  (b), and 120m 

110" W (c),  and meridional velocity at 25m  140" W (d).  The different curves are 

TAO measurements (black), model simulation (red), and T/P assimilation (blue). 

Anomalies are relative to  the respective temporal means. The red and blue bars 

denote  simulated  and smoothed model state error  estimates, respectively, computed 

as part of the Kalman filter. 

Plate 5: Comparison of temperature anomalies ("C) at select TAO measurements; (a) 

200m 8"N 180"E, (b) 500m 8"N 180"E, (c) 20m 0"N 95"W, (d) 300m 0"N 95"W, (e) 
125m 2"s 165"E, (f) 500m 2"s 165"E, (g) 140m 0"N 140"W, (h) 300m 0"N 140"W. 
Different curves are TAO measurements (black), model simulation (red),  and T/P  
assimilation (blue). Anomalies are relative to respective temporal means. The red 

and blue bars denote simulated and smoothed model state  error  estimates, respec- 

tively, computed as part of the  Kalman filter. The  model-data residual variances 

(simulation,  smoothed) ("C2) are (a) (0.23, O.lO), (b) (0.027, 0.021), (c) (3.0, 3.3), 

(d) (0.28, 0.24), (e) (1.8, 2.0), ( f )  (0.25, 0.30), (g) (1.9, 1.7), (h) (0.30, 0.61). 
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Plate 6:  Differences of simulation  minus  assimilation  residual variances with  respect to 

gridded XBT data  at four  representative  depths; (a) 20m, (b) 80m, (c) 160m, (d) 
300m. Units  in O C 2 .  Negative  values indicate that assimilation  is further away from 

the measurements than simulation is. 
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